In a triangle ABC, D is a point on BC such that $$\frac{{{\text{AB}}}}{{{\text{AC}}}} = \frac{{{\text{BD}}}}{{{\text{DC}}}}.$$ If ∠B = 68° and ∠C = 52°, then measure of ∠BAD is equal to:
A. 50°
B. 40°
C. 60°
D. 30°
Answer: Option D
Solution (By Examveda Team)

If $$\frac{{{\text{AB}}}}{{{\text{AC}}}} = \frac{{{\text{BD}}}}{{{\text{DC}}}}$$ then AD is bisector of ∠A.
∠A = 180° - (68° + 52°)
∠A = 60°
∠BAD = $$\frac{{{{60}^ \circ }}}{2}$$ = 30°
Join The Discussion