Examveda

In a two beam interference pattern, the maximum and minimum intensity values are found to be 25$${I_0}$$ and 9$${I_0}$$ respectively, where $${I_0}$$ is a constant. The intensities of the two interfering beams are

A. 16$${I_0}$$ and $${I_0}$$

B. 5$${I_0}$$ and 3$${I_0}$$

C. 17$${I_0}$$ and 8$${I_0}$$

D. 8$${I_0}$$ and 2$${I_0}$$

Answer: Option A


This Question Belongs to Engineering Physics >> Electromagnetic Theory

Join The Discussion

Related Questions on Electromagnetic Theory

Which one of the following current densities, $$\overrightarrow {\bf{J}} $$ can generate the magnetic vector potential $$\overrightarrow {\bf{A}} = \left( {{y^2}{\bf{\hat i}} + {x^2}{\bf{\hat j}}} \right)?$$

A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$

B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$

C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$

D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$