In circular measure, the value of the angle 11°15' is:
A. $$\frac{{{\pi ^c}}}{{16}}$$
B. $$\frac{{{\pi ^c}}}{8}$$
C. $$\frac{{{\pi ^c}}}{4}$$
D. $$\frac{{{\pi ^c}}}{{12}}$$
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{ & {11^ \circ }15' = 11 + \frac{{15}}{{60}} = 11 + \frac{1}{4} = \frac{{{{45}^ \circ }}}{4} \cr & {\text{We know }}\pi \,{\text{radian}} = {180^ \circ } \cr & {1^ \circ } = \left( {\frac{\pi }{{180}}} \right){\text{ radian,}} \cr & \frac{{{{45}^ \circ }}}{4} = \frac{\pi }{{{{180}^ \circ }}} \times \frac{{{{45}^ \circ }}}{4} = \frac{{{\pi ^c}}}{{16}} \cr} $$Related Questions on Circular Measurement of Angle
If 0 ≤ θ ≤ $$\frac{\pi }{2}$$ and sec2θ + tan2θ = 7, then θ is
A. $$\frac{{5\pi }}{{12}}$$ radian
B. $$\frac{\pi }{3}$$ radian
C. $$\frac{\pi }{6}$$ radian
D. $$\frac{\pi }{2}$$ radian

Join The Discussion