In model evaluation, what is the term for the process of splitting the dataset into two parts: one for training and one for testing?
A. Data Sampling
B. Data Cleaning
C. Data Splitting
D. Data Transformation
Answer: Option C
Related Questions on Model Evaluation and Validation
What is the primary purpose of a validation dataset in machine learning?
A. To train the model
B. To evaluate the model on unseen data
C. To test the model's performance on training data
D. To visualize data relationships
A. Accuracy
B. Precision
C. Recall
D. F1 Score
A. It reduces the risk of overfitting
B. It reduces the number of folds used in training
C. It increases the model's complexity
D. It decreases the training time
A. Leave-One-Out Cross-Validation (LOOCV)
B. Stratified Sampling
C. Holdout Validation
D. Feature Scaling

Join The Discussion