In quadrilateral ABCD, the bisectors of ∠A and ∠B meet at O and ∠AOB = 64°. ∠C + ∠D is equal to:
A. 116°
B. 128°
C. 148°
D. 136°
Answer: Option B
Solution (By Examveda Team)

x + y = 180° - 64°
x + y = 116°
2(x + y) = 232°
∠C + ∠D = 360° - 232° = 128°
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion