In the following figure, AD bisects angle BAC. Find the length (in cm) of BD.

A. 4
B. 5
C. 9
D. 6
Answer: Option A
Solution (By Examveda Team)

$$\eqalign{ & AD{\text{ is angle bisector of }}\angle A \cr & \therefore \frac{{AB}}{{AC}} = \frac{{BD}}{{DC}} \cr & \Rightarrow \frac{6}{{2x - 3}} = \frac{{x - 2}}{x} \cr & \Rightarrow 6x = 2{x^2} - 4x - 3x + 6 \cr & \Rightarrow 2{x^2} - 13x + 6 = 0 \cr & \Rightarrow 2{x^2} - 12x - x + 6 = 0 \cr & \Rightarrow 2x\left( {x - 6} \right) - 1\left( {x - 6} \right) = 0 \cr & \Rightarrow \left( {x - 6} \right)\left( {2x - 1} \right) = 0 \cr & x - 6 = 0 \cr & x = 6 \cr & 2x - 1 = 0 \cr & x = \frac{1}{2}\left( {{\text{not valied}}} \right) \cr & \therefore BD = x - 2 = 6 - 2 = 4 \cr} $$
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion