In the given figure, ABC is a right-angled triangle. ∠ABC = 90° and ∠ACB = 60°. If the radius of the smaller circle is 2 cm, then what is the radius (in cm) of the larger circle?

A. 4
B. 6
C. 4.5
D. 7.5
Answer: Option B
Solution (By Examveda Team)

OCD = 30°
OD = 2
OC = 4
O1E = R
O1O = R + 2
ΔOCD Similar to ΔO1CE

$$\eqalign{ & \frac{{{\text{OC}}}}{{{{\text{O}}_1}{\text{C}}}} = \frac{{{\text{OD}}}}{{{{\text{O}}_1}{\text{E}}}} \cr & \frac{4}{{{\text{R}} + 2 + 4}} = \frac{2}{{\text{R}}} \cr} $$
4R = 2R + 12
2R = 12
R = 6
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion