In the given figure, AD is bisector of angle ∠CAB and BD is bisector of angle ∠CBF. If the angle at C is 34°, the angle ∠ADB is:

A. 34°
B. 32°
C. 17°
D. 16°
Answer: Option C
Solution (By Examveda Team)

$$\eqalign{ & \angle {\text{D}} = \frac{{\angle {\text{C}}}}{2}\left( {{\text{by angle bisector theorem}}} \right) \cr & \angle {\text{D}} = \frac{{34}}{2} \cr & \angle {\text{D}} = {17^ \circ } \cr} $$
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion