In the given figure, if AC, DE are parallel and ∠CAB = 38°, then the value of ∠ABC + 5∠CBD is:

A. 158°
B. 178°
C. 218°
D. 196°
Answer: Option C
Solution (By Examveda Team)

If AC || BD,
2a + b + a = 180° . . . . . . (1)
2a = 38°
a = 19°
From equation (1)
2 × 19° + b + 19° = 180°
b = 123°
Now,
∠ABC + 5∠CBD
= 123° + 5 × 19°
= 218°
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion