In the given figure, PQRS is a square of side 20 cm and SR is extended to point T. If the length of QT is 25 cm, then what is the distance (in cm) between the centers O1 and O2 of the two circles?

A. $$5\sqrt {10} $$
B. $$4\sqrt {10} $$
C. $$8\sqrt {15} $$
D. $$16\sqrt 2 $$
Answer: Option A
Solution (By Examveda Team)

$$\eqalign{ & R{T^2} = {25^2} - {20^2} \cr & RT = 15 \cr & {\text{Inradius }}\left( {\text{r}} \right) = \frac{{20 + 15 - 25}}{2} = \frac{{10}}{2} = 5 \cr & {\text{In }}\Delta {O_1}A{O_2} \cr & {O_1}O_2^2 = {O_1}{A^2} + AO_2^2 \cr & = {\left( 5 \right)^2} + {\left( {15} \right)^2} \cr & = 25 + 225 \cr & = 250 \cr & {O_1}{O_2} = 5\sqrt {10} {\text{ cm}} \cr} $$
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion