In the given figure, two identical circles of radius 4 cm touch each other. A and B are the centres of the two circles. If RQ is a tangent to the circle, then what is the length (in cm) of RQ?

A. 3√3
B. 2√6
C. 4√2
D. 6√2
Answer: Option C
Solution (By Examveda Team)

n2 = 8 × 16
n2 = 128
n = 8$$\sqrt 2 $$

b = (8$$\sqrt 2 $$ + a)
a2 + (16)2 = b2
a2 + (16)2 = (8$$\sqrt 2 $$ + a)2
a2 + 256 = 128 + a2 + 16$$\sqrt 2 $$ a
128 = 16$$\sqrt 2 $$ a
a = $$\frac{8}{{\sqrt 2 }}$$
a = 4$$\sqrt 2 $$
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion