In ΔABC, ∠A - ∠B = 33°, ∠B - ∠C = 18°. What is the sum of the smallest and the largest angles of the triangle?
A. 125°
B. 143°
C. 92°
D. 108°
Answer: Option A
Solution (By Examveda Team)

∠A + ∠B + ∠C = 180° . . . . . . . (i)
∠A - ∠B = 33°
∠A = 33° + ∠B
∠B - ∠C = 18°
∠C = ∠B - 18°
From equation (i)
33° + ∠B + ∠B + ∠B - 18° = 180°
3°∠B + 15° = 180°
∠B = 55°
∠A = 88°
∠C = 37°
The sum of largest and smallest angles of the triangle = 88° + 37° = 125°
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion