In ΔABC, D and E are points on the sides AB and AC, respectively, such that DE || BC and DE : BC = 6 : 7. (Area of ΔADE) : (Area of trapezium BCED) = ?
A. 49 : 13
B. 13 : 36
C. 13 : 49
D. 36 : 13
Answer: Option D
Solution (By Examveda Team)

AD : BD = 6 : 1
ΔADE : trapezium BCDE = 36 : 13
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion