In ΔABC, D and E are the points on AB and AC respectively such that AD × AC = AB × AE. If ∠ADE = ∠ACB + 30° and ∠ABC = 78°, then ∠A = ?
A. 68°
B. 48°
C. 56°
D. 54°
Answer: Option D
Solution (By Examveda Team)

$$\frac{{{\text{AD}}}}{{{\text{AB}}}} = \frac{{{\text{AE}}}}{{{\text{AC}}}}$$
(It's mean ΔADE ∽ ΔABC)
∠B = ∠D, ∠C = ∠E
∠D = 78°
∠ADE = ∠ACB + 30°
78° = ∠ACB + 30°
∠ACB = 48°
∠A + ∠D + ∠E = 180°
∠A + 78 + 48 = 180°
∠A = 54°
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion