In ΔABC, D is a point on BC. If $$\frac{{{\text{AB}}}}{{{\text{AC}}}} = \frac{{{\text{BD}}}}{{{\text{DC}}}},$$ ∠B = 75° and ∠C = 45°, then ∠BAD is equal to :
A. 50°
B. 30°
C. 60°
D. 45°
Answer: Option B
Solution (By Examveda Team)

Since $$\frac{{{\text{AB}}}}{{{\text{AC}}}} = \frac{{{\text{BD}}}}{{{\text{DC}}}}$$
Hence AD is an angle Bisector
Hence ∠BAD $$ = \frac{{{{180}^ \circ } - \left( {{{75}^ \circ } + {{45}^ \circ }} \right)}}{2} = \frac{{{{60}^ \circ }}}{2} = {30^ \circ }$$
Join The Discussion