In ΔABC, D is a point on BC. If $$\frac{{{\text{AB}}}}{{{\text{AC}}}} = \frac{{{\text{BD}}}}{{{\text{DC}}}},$$ ∠B = 75° and ∠C = 45°, then ∠BAD is equal to :
A. 50°
B. 30°
C. 60°
D. 45°
Answer: Option B
Solution (By Examveda Team)

Since $$\frac{{{\text{AB}}}}{{{\text{AC}}}} = \frac{{{\text{BD}}}}{{{\text{DC}}}}$$
Hence AD is an angle Bisector
Hence ∠BAD $$ = \frac{{{{180}^ \circ } - \left( {{{75}^ \circ } + {{45}^ \circ }} \right)}}{2} = \frac{{{{60}^ \circ }}}{2} = {30^ \circ }$$
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion