In ΔABC, the bisector of ∠A intersect side BC at D. If AB = 12 cm, AC = 15 cm and BC = 18 cm, then the length of BD is:
A. 7.5 cm
B. 8 cm
C. 9.6 cm
D. 9 cm
Answer: Option B
Solution (By Examveda Team)

BD : DC = 12 : 15 = 4 : 5
BD = 18 × $$\frac{4}{9}$$ = 8 cm
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion