Least cost combination of inputs is achieved when
A. $$\frac{{\vartriangle {{\text{X}}_2}}}{{\vartriangle {{\text{X}}_1}}} > \frac{{{\text{P}}{{\text{X}}_1}}}{{{\text{P}}{{\text{X}}_2}}}$$
B. $$\frac{{\vartriangle {{\text{X}}_2}}}{{\vartriangle {{\text{X}}_1}}} < \frac{{{\text{P}}{{\text{X}}_1}}}{{{\text{P}}{{\text{X}}_2}}}$$
C. $$\frac{{\vartriangle {{\text{X}}_1}}}{{\vartriangle {{\text{X}}_2}}} = \frac{{{\text{P}}{{\text{X}}_1}}}{{{\text{P}}{{\text{X}}_2}}}$$
D. $$\frac{{\vartriangle {{\text{X}}_2}}}{{\vartriangle {{\text{X}}_1}}} = \frac{{{\text{P}}{{\text{X}}_1}}}{{{\text{P}}{{\text{X}}_2}}}$$
Answer: Option D
Join The Discussion