Let AX ⊥ BC of an equilateral triangle ABC. Then the sum of the perpendicular distances of the sides of ΔABC from any point inside the triangle is:
A. Greater than AX
B. Less than AX
C. Equal to BC
D. Equal to AX
Answer: Option D
Solution (By Examveda Team)

Let side = 2 units
Side = $$\frac{2}{{\sqrt 3 }}$$(PT + QT + TR)
2 = $$\frac{2}{{\sqrt 3 }}$$(PT + QT + TR)
∴ PT + QT + TR = $${\sqrt 3 }$$
& AX $$ = \frac{{\sqrt 3 }}{2} \times 2 = \sqrt 3 $$
So it is equal to AX
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion