Let \[{\text{f}}\left( {\text{x}} \right) = \left\{ {\begin{array}{*{20}{c}} { - \pi ,\,\,{\text{if}}}&{ - \pi < {\text{x}} \leqslant {\text{0}}} \\ {\pi ,\,\,{\text{if}}}&{0 < {\text{x}} \leqslant \pi } \end{array}} \right.\] be a periodic function of period 2π. The coefficient of sin5x in the Fourier series expansion of f(x) in the interval [-π, π] is
A. $$\frac{4}{5}$$
B. $$\frac{5}{4}$$
C. $$\frac{4}{3}$$
D. $$\frac{3}{4}$$
Answer: Option A
A. $$\frac{1}{{{\text{s}} + {\text{a}}}}$$
B. $$\frac{1}{{{\text{s}} - {\text{a}}}}$$
C. $$\frac{1}{{{\text{a}} - {\text{s}}}}$$
D. $$\infty $$
Evaluate $$\int\limits_0^\infty {\frac{{\sin {\text{t}}}}{{\text{t}}}{\text{dt}}} $$
A. $$\pi $$
B. $$\frac{\pi }{2}$$
C. $$\frac{\pi }{4}$$
D. $$\frac{\pi }{8}$$
A. $$\frac{{1 + {{\text{s}}^2}}}{{{{\left( {{{\text{s}}^2} - 1} \right)}^2}}}$$
B. $$\frac{{{\text{st}}}}{{\left( {{{\text{s}}^2} - 1} \right)}}$$
C. $$\frac{{1 - {{\text{s}}^2}}}{{{{\left( {{{\text{s}}^2} - 1} \right)}^2}}}$$
D. $$\frac{{1 + {{\text{s}}^2}}}{{1 - {{\text{s}}^2}}}$$
A. $$\frac{2}{{{\text{s}} + 1}}$$
B. $$\frac{4}{{{\text{s}} + 1}}$$
C. $$\frac{4}{{{{\text{s}}^2} + 1}}$$
D. $$\frac{2}{{{{\text{s}}^2} + 1}}$$

Join The Discussion