Examveda

Let $$\root 3 \of a = \root 3 \of {26} + \root 3 \of 7 + \root 3 \of {63} $$     then

A. a < 729 but a > 216

B. a < 216

C. a > 729

D. a = 729

Answer: Option A

Solution (By Examveda Team)

$$\eqalign{ & \root 3 \of a = \root 3 \of {26} + \root 3 \of 7 + \root 3 \of {63} \cr & {\text{Take round figure}} \cr & \Rightarrow \root 3 \of a < \root 3 \of {27} + \root 3 \of 8 + \root 3 \of {64} \cr & \Rightarrow \root 3 \of a < 3 + 2 + 4 \cr & \Rightarrow \root 3 \of a < 9 \cr & \Rightarrow a < {9^3} \cr & \Rightarrow a < 729 \cr & {\text{Option A is answer}} \cr} $$

This Question Belongs to Arithmetic Ability >> Surds And Indices

Join The Discussion

Related Questions on Surds and Indices