Let \[{T_{ij}} = \sum\limits_K {{\varepsilon _{ijk}}{a_k}} \] and \[{\beta _k} = \sum\limits_{i,\,j} {{\varepsilon _{ijk}}{T_{ij}}} ,\] where \[{\varepsilon _{ijk}}\] is the Levi-Civita density, defined to be zero, if two 'of the indices. coincide and +1 and -1 depending on whether ijk is even or odd permutation of 1, 2, 3. Then β3 is equal to
A. 2a3
B. -2a3
C. a3
D. -a3
Answer: Option A
Join The Discussion