Let the state-space representation of an LTI system be \[\mathop {\rm{X}}\limits^ \cdot \](t) = AX(t) + Bu(t), y(t) = CX(t) + Du(t) where A, B, C are matrices, D is a scalar, u(t) is the input to the system, and y(t) is its output. Let B = [0 0 1]T and D = 0. Which one of the following options for A and C will ensure that the transfer function of this LTI system is \[H\left( s \right) = \frac{1}{{{s^3} + 3{s^2} + 2s + 1}}\]
A. \[A = \left[ {\begin{array}{*{20}{c}} 0&1&0\\ 0&0&1\\ { - 3}&{ - 2}&{ - 1} \end{array}} \right]{\rm{ and }} \,C = \left[ {0\,\,\,0\,\,\,1} \right]\]
B. \[A = \left[ {\begin{array}{*{20}{c}} 0&1&0\\ 0&0&1\\ { - 1}&{ - 2}&{ - 3} \end{array}} \right]{\rm{ and }} \,C = \left[ {0\,\,\,0\,\,\,1} \right]\]
C. \[A = \left[ {\begin{array}{*{20}{c}} 0&1&0\\ 0&0&1\\ { - 1}&{ - 2}&{ - 3} \end{array}} \right]{\rm{ and }} \,C = \left[ {1\,\,\,0\,\,\,0} \right]\]
D. \[A = \left[ {\begin{array}{*{20}{c}} 0&1&0\\ 0&0&1\\ { - 3}&{ - 2}&{ - 1} \end{array}} \right]{\rm{ and }} \,C = \left[ {1\,\,\,0\,\,\,0} \right]\]
Answer: Option C
In root locus analysis the breakaway and break in points
A. lie on the real axis
B. Either lie on the real axis or occur in complex conjugate pairs
C. Always occur in complex conjugate pairs
D. None of the above
Which of the following features is not associated with Nichols chart?
A. (0 dB, -180°) point on Nichols chart represent critical Point (-1, 0)
B. It is symmetric about -180°
C. M loci are centred about (0 dB, -180°) point
D. The frequency at intersection of G (j$$\omega $$) locus and M = +3 dB locus gives bandwidth of closed loop system

Join The Discussion