Let two chords AB and AC of the larger circle touch the smaller circle having same centre at X and Y. Then XY = ?
A. BC
B. $$\frac{1}{2}$$ BC
C. $$\frac{1}{3}$$ BC
D. $$\frac{1}{4}$$ BC
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & {\text{Draw}} \bot OY{\text{ on }}AC \cr & {\text{So, }}AY = YC \cr} $$
$$\eqalign{ & AX = BX\,\,\left[ {\because OX \bot AB} \right] \cr & \because \Delta AYX \cong \Delta ABC \cr & \frac{{AY}}{{AC}} = \frac{{XY}}{{BC}} \cr & \frac{{AY}}{{2AY}} = \frac{{XY}}{{BC}} \cr & XY = \frac{1}{2}BC \cr} $$
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion