Let X1, X2 be two independent normal random variables with means μ1, μ2 and standard deviations σ1, σ2 respectively. Consider Y = X1 - X2; μ1 = μ2 = 1, σ1 = 1, σ2 = 2, Then,
A. Y is normal distributed with mean 0 and variance 1
B. Y is normally distributed with mean 0 and variance 5
C. Y has mean 0 and variance 5, but is NOT normally distributed
D. Y has mean 0 and variance 1, but is NOT normally distributed
Answer: Option B
Related Questions on Probability and Statistics
A coin is tossed 4 times. What is the probability of getting heads exactly 3 times?
A. $$\frac{1}{4}$$
B. $$\frac{3}{8}$$
C. $$\frac{1}{2}$$
D. $$\frac{3}{4}$$
A. 1 and $$\frac{1}{3}$$
B. $$\frac{1}{3}$$ and 1
C. 1 and $$\frac{4}{3}$$
D. $$\frac{1}{3}$$ and $$\frac{4}{3}$$
A. E(XY) = E(X) E(Y)
B. Cov (X, Y) = 0
C. Var (X + Y) = Var (X) + Var (Y)
D. E(X2Y2) = (E(X))2 (E(Y))2

Join The Discussion