Let x2 - 117 = 0. The iterative steps for the solution using Newton-Raphson's method is given by
A. $${{\text{x}}_{{\text{k}} + 1}} = \frac{1}{2}\left( {{{\text{x}}_{\text{k}}} + \frac{{117}}{{{{\text{x}}_{\text{k}}}}}} \right)$$
B. $${{\text{x}}_{{\text{k}} + 1}} = {{\text{x}}_{\text{k}}} - \frac{{117}}{{{{\text{x}}_{\text{k}}}}}$$
C. $${{\text{x}}_{{\text{k}} + 1}} = {{\text{x}}_{\text{k}}} - \frac{{{{\text{x}}_{\text{k}}}}}{{117}}$$
D. $${{\text{x}}_{{\text{k}} + 1}} = {{\text{x}}_{\text{k}}} - \frac{1}{2}\left( {{{\text{x}}_{\text{k}}} + \frac{{117}}{{{{\text{x}}_{\text{k}}}}}} \right)$$
Answer: Option A
Related Questions on Numerical Methods
Roots of the algebraic equation x3 + x2 + x + 1 = 0 are
A. (+1, +j, -j)
B. (+1, -1, +1)
C. (0, 0, 0)
D. (-1, +j. -j)
A. Only I
B. Only II
C. Both I and II
D. Neither I nor II

Join The Discussion