ln ΔABC, ∠A = 66°. AB and AC are produced to points D and E, respectively. If the bisectors of ∠CBD and ∠BCE meet at the point O, then ∠BOC is equal to:
A. 66°
B. 93°
C. 57°
D. 114°
Answer: Option C
Solution (By Examveda Team)

$$\eqalign{ & \angle A = {66^ \circ } \cr & \angle BOC = ? \cr & \angle BOC = {90^ \circ } - \frac{{\angle A}}{2} \cr & = {90^ \circ } - \frac{{{{66}^ \circ }}}{2} \cr & = {90^ \circ } - {33^ \circ } \cr & = {57^ \circ } \cr} $$
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion