Match List-I with List-II and select the correct answer:
| List-I | List-II |
| A. $$\frac{{{\text{dy}}}}{{{\text{dx}}}} = \frac{{\text{y}}}{{\text{x}}}$$ | 1. Circles |
| B. $$\frac{{{\text{dy}}}}{{{\text{dx}}}} = - \frac{{\text{y}}}{{\text{x}}}$$ | 2. Straight lines |
| C. $$\frac{{{\text{dy}}}}{{{\text{dx}}}} = \frac{{\text{x}}}{{\text{y}}}$$ | 3. Hyperbolas |
| D. $$\frac{{{\text{dy}}}}{{{\text{dx}}}} = - \frac{{\text{x}}}{{\text{y}}}$$ |
A. a-2, b-3, c-3, d-1
B. a-1, b-3, c-2, d-1
C. a-2, b-1, c-3, d-3
D. a-3, b-2, c-1, d-2
Answer: Option A
A. $${\text{y}} = \left( {{{\text{C}}_1} - {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
B. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} - {{\text{C}}_2}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
C. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
D. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} - {{\text{C}}_4}\sin {\text{x}}$$
A. $$\sqrt {1 - {{\text{x}}^2}} = {\text{c}}$$
B. $$\sqrt {1 - {{\text{y}}^2}} = {\text{c}}$$
C. $$\sqrt {1 - {{\text{x}}^2}} + \sqrt {1 - {{\text{y}}^2}} = {\text{c}}$$
D. $$\sqrt {1 + {{\text{x}}^2}} + \sqrt {1 + {{\text{y}}^2}} = {\text{c}}$$

Join The Discussion