PQR is an isosceles triangle such that PQ = QR = 10 cm and ΔPQR = 90°. What is the length of the perpendicular drawn from Q on PR?
A. 4√2 cm
B. 6√2 cm
C. 7√2 cm
D. 5√2 cm
Answer: Option D
Solution (By Examveda Team)

$$\eqalign{ & \frac{1}{2} \times 10 \times 10 = \frac{1}{2} \times 10\sqrt 2 \times {\text{QS}} \cr & {\text{QS}} = 5\sqrt 2 \cr} $$
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion