Solution (By Examveda Team)
$$\eqalign{
& \frac{1}{{{{\left( {216} \right)}^{ - \frac{2}{3}}}}}{\text{ + }}\frac{1}{{{{\left( {256} \right)}^{ - \frac{3}{4}}}}}{\text{ + }}\frac{1}{{{{\left( {32} \right)}^{ - \frac{1}{5}}}}} \cr
& = \frac{1}{{{{\left( {{6^3}} \right)}^{ - \frac{2}{3}}}}}{\text{ + }}\frac{1}{{{{\left( {{4^4}} \right)}^{ - \frac{3}{4}}}}}{\text{ + }}\frac{1}{{{{\left( {{2^5}} \right)}^{ - \frac{1}{5}}}}} \cr
& = \frac{1}{{{6^{3 \times \frac{{\left( { - 2} \right)}}{3}}}}}{\text{ + }}\frac{1}{{{4^{4 \times \frac{{\left( { - 3} \right)}}{4}}}}} + \frac{1}{{{2^{5 \times \frac{{\left( { - 1} \right)}}{5}}}}} \cr
& = \frac{1}{{{6^{ - 2}}}}{\text{ + }}\frac{1}{{{4^{ - 3}}}}{\text{ + }}\frac{1}{{{2^{ - 1}}}} \cr
& = \left( {{6^2} + {4^3} + {2^1}} \right) \cr
& = \left( {36 + 64 + 2} \right) \cr
& = 102 \cr} $$
Join The Discussion