Solution of the variables x1 and x2 for the following equations is to be obtained by employing the Newton-Raphson iterative method
equation (i) 10x2 sin x1 - 0.8 = 0
equation (ii) 10$${\text{x}}_2^2$$ - 10x2 cos x1 - 0.6 = 0
Assuming the initial values x1 = 0.0 and x2 = 1.0, the Jacobian matrix is
A. \[\left[ {\begin{array}{*{20}{c}} {10}&{ - 0.8} \\ 0&{ - 0.6} \end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}} {10}&0 \\ 0&{10} \end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}} 0&{ - 0.8} \\ {10}&{ - 0.6} \end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}} {10}&0 \\ {10}&{ - 10} \end{array}} \right]\]
Answer: Option B
Related Questions on Numerical Methods
Roots of the algebraic equation x3 + x2 + x + 1 = 0 are
A. (+1, +j, -j)
B. (+1, -1, +1)
C. (0, 0, 0)
D. (-1, +j. -j)
A. Only I
B. Only II
C. Both I and II
D. Neither I nor II

Join The Discussion