Suppose A and B are two independent events with probabilities P(A) ≠ 0 and P(B) ≠ 0. Let $$\overline {\text{A}} $$ and $$\overline {\text{B}} $$ be their complements. Which one of the following statements is FALSE?
A. $${\text{P}}\left( {{\text{A}} \cap {\text{B}}} \right) = {\text{P}}\left( {\text{A}} \right){\text{P}}\left( {\text{B}} \right)$$
B. $${\text{P}}\left( {\frac{{\text{A}}}{{\text{B}}}} \right) = {\text{P}}\left( {\text{A}} \right)$$
C. $${\text{P}}\left( {{\text{A}} \cup {\text{B}}} \right) = {\text{P}}\left( {\text{A}} \right) + {\text{P}}\left( {\text{B}} \right)$$
D. $${\text{P}}\left( {\overline {\text{A}} \cap \overline {\text{B}} } \right) = {\text{P}}\left( {\overline {\text{A}} } \right){\text{P}}\left( {\overline {\text{B}} } \right)$$
Answer: Option C
A coin is tossed 4 times. What is the probability of getting heads exactly 3 times?
A. $$\frac{1}{4}$$
B. $$\frac{3}{8}$$
C. $$\frac{1}{2}$$
D. $$\frac{3}{4}$$
A. 1 and $$\frac{1}{3}$$
B. $$\frac{1}{3}$$ and 1
C. 1 and $$\frac{4}{3}$$
D. $$\frac{1}{3}$$ and $$\frac{4}{3}$$
A. E(XY) = E(X) E(Y)
B. Cov (X, Y) = 0
C. Var (X + Y) = Var (X) + Var (Y)
D. E(X2Y2) = (E(X))2 (E(Y))2

Join The Discussion