Suppose we train a hard-margin linear SVM on n > 100 data points in R2, yielding a hyperplane with exactly 2 support vectors. If we add one more data point and retrain the classifier, what is the maximum possible number of support vectors for the new hyperplane (assuming the n + 1 points are linearly separable)?
A. 2
B. 3
C. n
D. n+1
Answer: Option D
Related Questions on Machine Learning
In simple term, machine learning is
A. training based on historical data
B. prediction to answer a query
C. both A and B
D. automization of complex tasks
Which of the following is the best machine learning method?
A. scalable
B. accuracy
C. fast
D. all of the above
The output of training process in machine learning is
A. machine learning model
B. machine learning algorithm
C. null
D. accuracy
Application of machine learning methods to large databases is called
A. data mining.
B. artificial intelligence
C. big data computing
D. internet of things
Join The Discussion