If $$x + \frac{1}{x} = 5{\text{,}}$$ then the value of $$\frac{{5x}}{{{x^2} + 5x + 1}}$$ is?
A. $$\frac{1}{3}$$
B. $$\frac{1}{4}$$
C. $$\frac{1}{2}$$
D. $$\frac{1}{5}$$
Answer: Option C
Solution (By Examveda Team)
$$\eqalign{ & x + \frac{1}{x} = 5{\text{ then, }}\frac{{5x}}{{{x^2} + 5x + 1}} \cr & \Rightarrow \frac{5}{{x + 5 + \frac{1}{x}}} \cr & \Rightarrow \frac{5}{{x + \frac{1}{x} + 5}} \cr & \Rightarrow \frac{5}{{5 + 5}} \cr & \Rightarrow \frac{1}{2} \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion