The area of the largest triangle that can be inscribed in a semicircle of radius 4 cm in square centimetres is
A. 16 cm2
B. 14 cm2
C. 12 cm2
D. 18 cm2
Answer: Option A
Solution (By Examveda Team)

$$\eqalign{ & {\text{Base}} = 8 \cr & {\text{Height}} = 4 \cr & {\text{Area}} = \frac{1}{2} \times {\text{Base}} \times {\text{Height}} \cr & = \frac{1}{2} \times 8 \times 4 \cr & = 16 \cr} $$
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion