The Baryon number of proton, the lepton number of proton, the Baryon number of electron and the lepton number of electron are respectively
A. zero, zero, one and zero
B. one, one, zero and one
C. one, zero, zero and one
D. zero, one, one and zero
Answer: Option C
A. Thorium series
B. Neptunium series
C. Uranium series
D. Actinium series
A. 10-10 eV
B. 10-9 eV
C. 10-6 eV
D. 10-4 eV
A. The process is allowed because ΔS = 0
B. The process is allowed because $$\Delta {I_3} = 0$$
C. The process is not allowed because ΔS ≠ 1 and $$\Delta {I_3} \ne 0$$
D. The process is not allowed because the Baryon number is violated
A. $${\left( {{}^1{s_{1/2}}} \right)^2}{\left( {{}^1{p_{3/2}}} \right)^3};\,J = \frac{3}{2}$$
B. $${\left( {{}^1{s_{1/2}}} \right)^2}{\left( {{}^1{p_{1/2}}} \right)^2}{\left( {{}^1{p_{3/2}}} \right)^1};\,J = \frac{3}{2}$$
C. $${\left( {{}^1{s_{1/2}}} \right)^1}{\left( {{}^1{p_{3/2}}} \right)^4};\,J = \frac{1}{2}$$
D. $${\left( {{}^1{s_{1/2}}} \right)^2}{\left( {{}^1{p_{3/2}}} \right)^2}{\left( {{}^1{p_{1/2}}} \right)^1};\,J = \frac{1}{2}$$
Join The Discussion