Examveda
Examveda

The Bloch theorem states that within a crystal, the wave function $$\psi \left( {\overrightarrow {\bf{r}} } \right)$$ , of an electron has the form

A. $$\psi \left( {\overrightarrow {\bf{r}} } \right) = u\left( {\overrightarrow {\bf{r}} } \right){e^{i.\overrightarrow {\bf{k}} .\overrightarrow {\bf{r}} }}$$     where, $$u\left( {\overrightarrow {\bf{r}} } \right)$$  is an arbitrary function and $$\overrightarrow {\bf{k}} $$ is an arbitrary vector

B. $$\psi \left( {\overrightarrow {\bf{r}} } \right) = u\left( {\overrightarrow {\bf{r}} } \right){e^{i.\overrightarrow {\bf{G}} .\overrightarrow {\bf{r}} }}$$     where, $$u\left( {\overrightarrow {\bf{r}} } \right)$$  is an arbitrary function and $$\overrightarrow {\bf{G}} $$ is a reciprocal lattice vector

C. $$\psi \left( {\overrightarrow {\bf{r}} } \right) = u\left( {\overrightarrow {\bf{r}} } \right){e^{i.\overrightarrow {\bf{G}} .\overrightarrow {\bf{r}} }}$$     where $$u\left( {\overrightarrow {\bf{r}} } \right) = u\left( {\overrightarrow {\bf{r}} + \overrightarrow {\bf{A}} } \right),\,\overrightarrow {\bf{A}} $$     is a lattice and $$\overrightarrow {\bf{G}} $$ is a reciprocal lattice vector

D. $$\psi \left( {\overrightarrow {\bf{r}} } \right) = u\left( {\overrightarrow {\bf{r}} } \right){e^{i.\overrightarrow {\bf{k}} .\overrightarrow {\bf{r}} }}$$     where, $$u\left( {\overrightarrow {\bf{r}} } \right) = u\left( {\overrightarrow {\bf{r}} + \overrightarrow {\bf{A}} } \right),\,\overrightarrow {\bf{A}} $$     is a lattice vector and $$\overrightarrow {\bf{k}} $$ is an arbitrary vector

Answer: Option D


This Question Belongs to Engineering Physics >> Solid State Physics

Join The Discussion

Related Questions on Solid State Physics

In a cubic crystal, atoms of mass M1 lie on one set of planes and atoms of mass M2 lie on planes interleaved between those of the first set. If C is the forte constant between nearest neighbour planes, the frequency of lattice vibrations for the optical phonon branch with wave vector k = 0 is

A. $$\sqrt {2C\left( {\frac{1}{{{M_1}}} + \frac{1}{{{M_2}}}} \right)} $$

B. $$\sqrt {C\left( {\frac{1}{{2{M_1}}} + \frac{1}{{{M_2}}}} \right)} $$

C. $$\sqrt {C\left( {\frac{1}{{{M_1}}} + \frac{1}{{2{M_2}}}} \right)} $$

D. zero