The circular measure of an angle of an isosceles triangle is $$\frac{{5\pi }}{9}$$, circular measure of one of the other angles must be:
A. $$\frac{{5\pi }}{{18}}$$
B. $$\frac{{5\pi }}{9}$$
C. $$\frac{{2\pi }}{9}$$
D. $$\frac{{4\pi }}{9}$$
Answer: Option C
Join The Discussion
Comments (1)
Related Questions on Circular Measurement of Angle
If 0 ≤ θ ≤ $$\frac{\pi }{2}$$ and sec2θ + tan2θ = 7, then θ is
A. $$\frac{{5\pi }}{{12}}$$ radian
B. $$\frac{\pi }{3}$$ radian
C. $$\frac{\pi }{6}$$ radian
D. $$\frac{\pi }{2}$$ radian

5π/9=100*
other two angles=80/2=40* each
40*=40×π/180=2π/9