Examveda

The complete integral of (z - px - qy)3 = pq + 2(p2 + q)2 is

A. $${\text{z}} = {\text{ax}} + {\text{by}} + \root 3 \of {{\text{pq}} + 2{{\left( {{{\text{p}}^2} + {\text{q}}} \right)}^2}} $$

B. $${\text{z}} = {\text{ax}} + {\text{by}} + \root 3 \of {{\text{ab}} + 2{{\left( {{{\text{a}}^2} + {\text{b}}} \right)}^2}} $$

C. $${\text{z}} = {\text{ax}} + {\text{by}} + \root 3 \of {{\text{ab}}} + \root 3 \of {2{{\left( {{{\text{a}}^2} + {\text{b}}} \right)}^2}} $$

D. $${\text{z}} = {\text{ax}} + {\text{by}} + {\text{c}}$$

Answer: Option B


This Question Belongs to Engineering Maths >> Differential Equations

Join The Discussion

Related Questions on Differential Equations

The general solution of the differential equation, $$\frac{{{{\text{d}}^4}{\text{y}}}}{{{\text{d}}{{\text{x}}^4}}} - 2\frac{{{{\text{d}}^3}{\text{y}}}}{{{\text{d}}{{\text{x}}^3}}} + 2\frac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}} - 2\frac{{{\text{dy}}}}{{{\text{dx}}}} + {\text{y}} = 0$$       is

A. $${\text{y}} = \left( {{{\text{C}}_1} - {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

B. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} - {{\text{C}}_2}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

C. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

D. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} - {{\text{C}}_4}\sin {\text{x}}$$