The complete integral of (z - px - qy)3 = pq + 2(p2 + q)2 is
A. $${\text{z}} = {\text{ax}} + {\text{by}} + \root 3 \of {{\text{pq}} + 2{{\left( {{{\text{p}}^2} + {\text{q}}} \right)}^2}} $$
B. $${\text{z}} = {\text{ax}} + {\text{by}} + \root 3 \of {{\text{ab}} + 2{{\left( {{{\text{a}}^2} + {\text{b}}} \right)}^2}} $$
C. $${\text{z}} = {\text{ax}} + {\text{by}} + \root 3 \of {{\text{ab}}} + \root 3 \of {2{{\left( {{{\text{a}}^2} + {\text{b}}} \right)}^2}} $$
D. $${\text{z}} = {\text{ax}} + {\text{by}} + {\text{c}}$$
Answer: Option B
A. $${\text{y}} = \left( {{{\text{C}}_1} - {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
B. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} - {{\text{C}}_2}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
C. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
D. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} - {{\text{C}}_4}\sin {\text{x}}$$
A. $$\sqrt {1 - {{\text{x}}^2}} = {\text{c}}$$
B. $$\sqrt {1 - {{\text{y}}^2}} = {\text{c}}$$
C. $$\sqrt {1 - {{\text{x}}^2}} + \sqrt {1 - {{\text{y}}^2}} = {\text{c}}$$
D. $$\sqrt {1 + {{\text{x}}^2}} + \sqrt {1 + {{\text{y}}^2}} = {\text{c}}$$

Join The Discussion