The differential equation $$\frac{{{\text{dx}}}}{{{\text{dt}}}} = \frac{{4 - {\text{x}}}}{\tau },$$ with x(0) = 0 and the constant $$\tau $$ > 0, is to be numerically integrated using the forward Euler method with a constant integration time step T. The maximum value of T such that the numerical solution of x converges is
A. $$\frac{\tau }{4}$$
B. $$\frac{\tau }{2}$$
C. $$\tau $$
D. $$2\tau $$
Answer: Option D
Related Questions on Numerical Methods
Roots of the algebraic equation x3 + x2 + x + 1 = 0 are
A. (+1, +j, -j)
B. (+1, -1, +1)
C. (0, 0, 0)
D. (-1, +j. -j)
A. Only I
B. Only II
C. Both I and II
D. Neither I nor II

Join The Discussion