The eigen values and eigen vectors of the matrix \[\left[ {\begin{array}{*{20}{c}} 5&4 \\ 1&2 \end{array}} \right]\] are
A. 6, 1 and \[\left[ {\begin{array}{*{20}{c}} 4 \\ 1 \end{array}} \right],\,\left[ {\begin{array}{*{20}{c}} 1 \\ { - 1} \end{array}} \right]\]
B. 2, 5 and \[\left[ {\begin{array}{*{20}{c}} 4 \\ 1 \end{array}} \right],\,\left[ {\begin{array}{*{20}{c}} 1 \\ { - 1} \end{array}} \right]\]
C. 6 , 1 and \[\left[ {\begin{array}{*{20}{c}} 1 \\ 4 \end{array}} \right],\,\left[ {\begin{array}{*{20}{c}} 1 \\ { - 1} \end{array}} \right]\]
D. 2, 5 and \[\left[ {\begin{array}{*{20}{c}} 1 \\ 4 \end{array}} \right],\,\left[ {\begin{array}{*{20}{c}} 1 \\ { - 1} \end{array}} \right]\]
Answer: Option A
A. $$\frac{{1 + i}}{{\sqrt 2 }}a{\text{ and}} - \frac{{1 + i}}{{\sqrt 2 }}a$$
B. $$ia{\text{ and }} - ia$$
C. $$ia,\, - ia,\,\frac{{1 - i}}{{\sqrt 2 }}a{\text{ and}} - \frac{{1 - i}}{{\sqrt 2 }}a$$
D. $$\frac{{1 + i}}{{\sqrt 2 }}a,\, - \frac{{1 + i}}{{\sqrt 2 }}a,\,\frac{{1 - i}}{{\sqrt 2 }}a{\text{ and}} - \frac{{1 - i}}{{\sqrt 2 }}a$$
Which of the following functions of the complex variable z is not analytic everywhere?
A. ez
B. $$\sin \frac{{\text{z}}}{{\text{z}}}$$
C. e3
D. |z|3
A. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + 3{{{\bf{\hat j}}}^{\bf{'}}} + \left( {1 + \sqrt 3 } \right){{{\bf{\hat k}}}^{\bf{'}}}\]
B. \[\left( {1 + \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + 3{{{\bf{\hat j}}}^{\bf{'}}} + \left( {1 - \sqrt 3 } \right){{{\bf{\hat k}}}^{\bf{'}}}\]
C. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + \left( {3 + \sqrt 3 } \right){{{\bf{\hat j}}}^{\bf{'}}} + 2{{{\bf{\hat k}}}^{\bf{'}}}\]
D. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + \left( {3 - \sqrt 3 } \right){{{\bf{\hat j}}}^{\bf{'}}} + 2{{{\bf{\hat k}}}^{\bf{'}}}\]


Join The Discussion