The electric field $$\overrightarrow {\bf{E}} \left( {\overrightarrow {\bf{r}} ,\,t} \right)$$ for a circularly polarized electromagnetic wave propagating along the positive Z-direction is
A. $${E_0}\left( {{\bf{\hat x}} + {\bf{\hat y}}} \right)\exp \left[ {i\left( {kz - \omega t} \right)} \right]$$
B. $${E_0}\left( {{\bf{\hat x}} + i{\bf{\hat y}}} \right)\exp \left[ {i\left( {kz - \omega t} \right)} \right]$$
C. $${E_0}\left( {{\bf{\hat x}} + i{\bf{\hat y}}} \right)\exp \left[ {i\left( {kz + \omega t} \right)} \right]$$
D. $${E_0}\left( {{\bf{\hat x}} + {\bf{\hat y}}} \right)\exp \left[ {i\left( {kz + \omega t} \right)} \right]$$
Answer: Option A
A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$
B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$
C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$
D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$
A. 0.033 μm
B. 0.330 μm
C. 3.300 μm
D. 33.000 μm
A. $${\bf{\hat z}}k$$
B. $${\bf{\hat x}}k\sin \alpha + {\bf{\hat y}}k\cos \alpha $$
C. $${\bf{\hat x}}k\cos \alpha + {\bf{\hat y}}k\cos \alpha $$
D. $$ - {\bf{\hat z}}k$$
A. vp = vg
B. vp = $${\text{v}}_{\text{g}}^{\frac{1}{2}}$$
C. vp vg = c2
D. vg = $${\text{v}}_{\text{p}}^{\frac{1}{2}}$$
Join The Discussion