Examveda
Examveda

The electric field $$\overrightarrow {\bf{E}} \left( {\overrightarrow {\bf{r}} ,\,t} \right)$$  for a circularly polarized electromagnetic wave propagating along the positive Z-direction is

A. $${E_0}\left( {{\bf{\hat x}} + {\bf{\hat y}}} \right)\exp \left[ {i\left( {kz - \omega t} \right)} \right]$$

B. $${E_0}\left( {{\bf{\hat x}} + i{\bf{\hat y}}} \right)\exp \left[ {i\left( {kz - \omega t} \right)} \right]$$

C. $${E_0}\left( {{\bf{\hat x}} + i{\bf{\hat y}}} \right)\exp \left[ {i\left( {kz + \omega t} \right)} \right]$$

D. $${E_0}\left( {{\bf{\hat x}} + {\bf{\hat y}}} \right)\exp \left[ {i\left( {kz + \omega t} \right)} \right]$$

Answer: Option A


This Question Belongs to Engineering Physics >> Electromagnetic Theory

Join The Discussion

Related Questions on Electromagnetic Theory

Which one of the following current densities, $$\overrightarrow {\bf{J}} $$ can generate the magnetic vector potential $$\overrightarrow {\bf{A}} = \left( {{y^2}{\bf{\hat i}} + {x^2}{\bf{\hat j}}} \right)?$$

A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$

B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$

C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$

D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$