The energy $$E\left( {\overrightarrow {\bf{k}} } \right)$$ of electrons of wave vector $$\overrightarrow {\bf{k}} $$ in a solid is given by $$E\left( {\overrightarrow {\bf{k}} } \right) = A{k^2} + B{k^4},$$ where A and B are constants. The effective mass of the electron at $$\left| {\overrightarrow {\bf{k}} } \right| = {k_0}$$ is
A. $$Ak_0^2$$
B. $$\frac{{{\hbar ^2}}}{{2A}}$$
C. $$\frac{{{\hbar ^2}}}{{2A + 12Bk_0^2}}$$
D. $$\frac{{{\hbar ^2}}}{{Bk_0^2}}$$
Answer: Option C
The valence electrons do not directly determine the following property of a metal
A. electrical conductivity
B. thermal conductivity
C. shear modulus
D. metallic lustre
A. $${\left( {\frac{{2Q}}{P}} \right)^{ - 6}}$$
B. $${\left( {\frac{Q}{P}} \right)^{ - 6}}$$
C. $${\left( {\frac{P}{{2Q}}} \right)^{ - 6}}$$
D. $${\left( {\frac{P}{Q}} \right)^{ - 6}}$$
A. $$N\mu \coth \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
B. $$N\mu \tanh \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
C. $$N\mu \sinh \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
D. $$N\mu \cosh \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
A. $$\sqrt {2C\left( {\frac{1}{{{M_1}}} + \frac{1}{{{M_2}}}} \right)} $$
B. $$\sqrt {C\left( {\frac{1}{{2{M_1}}} + \frac{1}{{{M_2}}}} \right)} $$
C. $$\sqrt {C\left( {\frac{1}{{{M_1}}} + \frac{1}{{2{M_2}}}} \right)} $$
D. zero

Join The Discussion