The energy levels of a particle of mass m in a potential of the form \[\begin{gathered} V\left( x \right) = \infty ,\,\,\,\,\,\,\,\,\,\,\,\,x \leqslant 0 \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{1}{2}m{\omega ^2}{x^2},\,\,\,x > 0 \hfill \\ \end{gathered} \] are given, in terms of quantum number n = 0, 1, 2, 3, . . ., by
A. $$\left( {n + \frac{1}{2}} \right)\hbar \omega $$
B. $$\left( {2n + \frac{1}{2}} \right)\hbar \omega $$
C. $$\left( {2n + \frac{3}{2}} \right)\hbar \omega $$
D. $$\left( {n + \frac{3}{2}} \right)\hbar \omega $$
Answer: Option A
Join The Discussion