The error in $${\left. {\frac{{\text{d}}}{{{\text{dx}}}}{\text{f}}\left( {\text{x}} \right)} \right|_{{\text{x}} = {{\text{x}}_0}}}$$ for a continuous function estimated with h = 0.03 using the central difference formula $${\left. {\frac{{\text{d}}}{{{\text{dx}}}}{\text{f}}\left( {\text{x}} \right)} \right|_{{\text{x}} = {{\text{x}}_0}}} = \frac{{{\text{f}}\left( {{{\text{x}}_0} + {\text{h}}} \right) - {\text{f}}\left( {{{\text{x}}_0} - {\text{h}}} \right)}}{{2{\text{h}}}},$$ is 2 × 10-3. The values of x0 and f(x0) are 19.78 and 500.01, respectively. The corresponding error in the central difference estimate for h = 0.02 is approximately
A. 1.3 × 10-4
B. 3.0 × 10-4
C. 4.5 × 10-4
D. 9.0 × 10-4
Answer: Option D
Related Questions on Numerical Methods
Roots of the algebraic equation x3 + x2 + x + 1 = 0 are
A. (+1, +j, -j)
B. (+1, -1, +1)
C. (0, 0, 0)
D. (-1, +j. -j)
A. Only I
B. Only II
C. Both I and II
D. Neither I nor II

Join The Discussion