The following equation needs to be numerically solved using the Newton-Raphson method. x3 + 4x - 9 = 0. The iterative equation for this purpose is (k indicates the iteration level)
A. $${{\text{x}}_{{\text{k}} + 1}} = \frac{{2{\text{x}}_{\text{k}}^3 + 9}}{{3{\text{x}}_{\text{k}}^2 + 4}}$$
B. $${{\text{x}}_{{\text{k}} + 1}} = \frac{{3{\text{x}}_{\text{k}}^2 + 4}}{{2{\text{x}}_{\text{k}}^2 + 9}}$$
C. $${{\text{x}}_{{\text{k}} + 1}} = {{\text{x}}_{\text{k}}} - 3{\text{x}}_{\text{k}}^2 + 4$$
D. $${{\text{x}}_{{\text{k}} + 1}} = \frac{{4{\text{x}}_{\text{k}}^2 + 3}}{{9{\text{x}}_{\text{k}}^2 + 2}}$$
Answer: Option A
Related Questions on Numerical Methods
Roots of the algebraic equation x3 + x2 + x + 1 = 0 are
A. (+1, +j, -j)
B. (+1, -1, +1)
C. (0, 0, 0)
D. (-1, +j. -j)
A. Only I
B. Only II
C. Both I and II
D. Neither I nor II

Join The Discussion