The Fourier transform F(k) of a function f(x) is defined as $$F\left( k \right)\int_{ - \infty }^\infty {dxf\left( x \right)\exp \left( {ikx} \right).} $$ Then F(k) for f(x) = exp(-x2) is $$\left[ {{\text{Given: }}\int_{ - \infty }^\infty {\exp \left( { - {x^2}} \right)dx = \sqrt \pi } } \right]$$
A. $$\pi \exp \left( { - k} \right)$$
B. $$\sqrt \pi \exp \left( {\frac{{ - {k^2}}}{4}} \right)$$
C. $$\frac{{\sqrt \pi }}{2}\exp \left( {\frac{{ - {k^2}}}{2}} \right)$$
D. $$\sqrt {2\pi } \exp \left( { - {k^2}} \right)$$
Answer: Option B
A. $$\frac{{1 + i}}{{\sqrt 2 }}a{\text{ and}} - \frac{{1 + i}}{{\sqrt 2 }}a$$
B. $$ia{\text{ and }} - ia$$
C. $$ia,\, - ia,\,\frac{{1 - i}}{{\sqrt 2 }}a{\text{ and}} - \frac{{1 - i}}{{\sqrt 2 }}a$$
D. $$\frac{{1 + i}}{{\sqrt 2 }}a,\, - \frac{{1 + i}}{{\sqrt 2 }}a,\,\frac{{1 - i}}{{\sqrt 2 }}a{\text{ and}} - \frac{{1 - i}}{{\sqrt 2 }}a$$
Which of the following functions of the complex variable z is not analytic everywhere?
A. ez
B. $$\sin \frac{{\text{z}}}{{\text{z}}}$$
C. e3
D. |z|3
A. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + 3{{{\bf{\hat j}}}^{\bf{'}}} + \left( {1 + \sqrt 3 } \right){{{\bf{\hat k}}}^{\bf{'}}}\]
B. \[\left( {1 + \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + 3{{{\bf{\hat j}}}^{\bf{'}}} + \left( {1 - \sqrt 3 } \right){{{\bf{\hat k}}}^{\bf{'}}}\]
C. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + \left( {3 + \sqrt 3 } \right){{{\bf{\hat j}}}^{\bf{'}}} + 2{{{\bf{\hat k}}}^{\bf{'}}}\]
D. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + \left( {3 - \sqrt 3 } \right){{{\bf{\hat j}}}^{\bf{'}}} + 2{{{\bf{\hat k}}}^{\bf{'}}}\]
Join The Discussion