The function p(x) is given by $${\text{p}}\left( {\text{x}} \right) = \frac{{\text{A}}}{{{{\text{x}}^\mu }}}$$ where A and μ are constants with μ > 1 and 1 ≤ x < $$\infty $$ and p(x) = 0 for $$ - \infty $$ < x < 1. For p(x) to be a probability density function, the value of A should be equal to
A. μ - 1
B. μ + 1
C. $$\frac{1}{{\left( {\mu - 1} \right)}}$$
D. $$\frac{1}{{\left( {\mu + 1} \right)}}$$
Answer: Option A
Related Questions on Probability and Statistics
A coin is tossed 4 times. What is the probability of getting heads exactly 3 times?
A. $$\frac{1}{4}$$
B. $$\frac{3}{8}$$
C. $$\frac{1}{2}$$
D. $$\frac{3}{4}$$
A. 1 and $$\frac{1}{3}$$
B. $$\frac{1}{3}$$ and 1
C. 1 and $$\frac{4}{3}$$
D. $$\frac{1}{3}$$ and $$\frac{4}{3}$$
A. E(XY) = E(X) E(Y)
B. Cov (X, Y) = 0
C. Var (X + Y) = Var (X) + Var (Y)
D. E(X2Y2) = (E(X))2 (E(Y))2

Join The Discussion