The Hamiltonian of a particle is given by $$H = \frac{{{p^2}}}{{2m}} + V\left( {\left| {\overrightarrow {\bf{r}} } \right|} \right) + \phi \left( { + \left| {\overrightarrow {\bf{r}} } \right|} \right)\overrightarrow {\bf{L}} .\overrightarrow {\bf{S}} ,$$ where $$\overrightarrow {\bf{S}} $$ is the spin, $$V\left( {\left| {\overrightarrow {\bf{r}} } \right|} \right)$$ and $$\phi \left( {\left| {\overrightarrow {\bf{r}} } \right|} \right)$$ are potential functions and $$\overrightarrow {\bf{L}} \left( { = \overrightarrow {\bf{r}} \times \overrightarrow {\bf{p}} } \right)$$ is the angular momentum. The Hamiltonian does not commute with
A. $$\overrightarrow {\bf{L}} + \overrightarrow {\bf{S}} $$
B. $$\overrightarrow {{{\bf{S}}^2}} $$
C. $${L_z}$$
D. $$\overrightarrow {{{\bf{L}}^2}} $$
Answer: Option C
Join The Discussion