The iteration step in order to solve for the cube roots of a given number N using the Newton-Raphson's method is
A. $${{\text{x}}_{{\text{k}} + 1}} = {{\text{x}}_{\text{k}}} + \frac{1}{3}\left( {{\text{N}} - {\text{x}}_{\text{k}}^3} \right)$$
B. $${{\text{x}}_{{\text{k}} + 1}} = \frac{1}{3}\left( {2{{\text{x}}_{\text{k}}} + \frac{{\text{N}}}{{{\text{x}}_{\text{k}}^2}}} \right)$$
C. $${{\text{x}}_{{\text{k}} + 1}} = {{\text{x}}_{\text{k}}} - \frac{1}{3}\left( {{\text{N}} - {\text{x}}_{\text{k}}^3} \right)$$
D. $${{\text{x}}_{{\text{k}} + 1}} = \frac{1}{3}\left( {2{{\text{x}}_{\text{k}}} - \frac{{\text{N}}}{{{\text{x}}_{\text{k}}^2}}} \right)$$
Answer: Option B
Related Questions on Numerical Methods
Roots of the algebraic equation x3 + x2 + x + 1 = 0 are
A. (+1, +j, -j)
B. (+1, -1, +1)
C. (0, 0, 0)
D. (-1, +j. -j)
A. Only I
B. Only II
C. Both I and II
D. Neither I nor II

Join The Discussion